This area will cover relevant news of the threat to the planet from Near Earth Objects (NEOs) including concepts and designs for mitigation. All opinions are those of the author.

23 February 2007

Article: "UAH researchers working on laser system to deflect asteroid on collision path with Earth"

From the article:

UAH Laser Science and Engineering Group (LSEG), headed by Dr. Richard Fork, professor of Electrical and Computer Engineering, is conducting research into characterizing and deflecting asteroids that may endanger Earth.

The research has students excited about using lasers for space-related applications. Graduate student Blake Anderton wrote his master's thesis on "Application of Mode-locked lasers to asteroid characterization and mitigation." Undergraduate Gordon Aiken won a prize at a recent student conference for his poster and presentation "Space positioned LIDAR system for characterization and mitigation of Near Earth Objects." And members of the group are building a laser system "that is the grandfather of the laser that will push the asteroids," Fork said.

Fork said the current research relates back to work he performed in the mid-1980s, when he and other researchers at AT&T Bell Laboratories developed the first femtosecond lasers. They used one of the lasers to ablate material by ultra-intense laser pulses with femtosecond time resolution ("Femtosecond imaging of melting and evaporation at a photo excited silicon surface," M. C. Downer, R.L. Fork and C.V. Shank, Journal of the Optical Society of America B2,595-599 (1985)).

"The laser we are developing now is also being developed to ablate materials," Fork said, but the device would be "a substantial distance" from the target. The system includes an argon laser, a mode-locked Ti-sapphire oscillator, a regenerative Ti-sapphire amplifier, a doubled neodymium-yag pulsed laser and helium-neon line-up lasers, according to Dr. Fork.

The short-term goal of the work is "to amplify femtosecond pulses to high peak power at high average power for remote sensing," using unique features associated with the high pulse intensity, Fork said. The work is funded by the U.S. Army and involves a local company that employs several of Fork's former students. The research does not concern characterizing or deflecting asteroids, but Fork sees a connection.


Link: Article

No comments:

Post a Comment

Note: Any opinions expressed on the blog are solely those of the author. The site is not sponsored by, nor does it represent the opinions of, any organization, corporation, or other entity.